Know your model.

In biomedical research, we are often trying to answer questions at different levels. By “level,” I mean from molecules, cells, tissue, organ, organ system, organism, community, and ecosystem. It is rare that biomedical research gets to the community and ecosystem level. There’s also a cost / benefit consideration to what “level” your particular research question is answering. Studying a problem at the level of the organism is much more expensive than studying a problem at the level of molecule — however one might argue that studying at the level of the organism is more biologically / clinically relevant.

The cell model used in my lab, SH-SY5Y cells. Left: Non-differentiated cells, neuroblastoma, continue division. Right: Differentiated cells, stopped dividing, extended axons & dendrites, secrete neurotransmitter.

At each level, you have the thing in your lab that you are actually manipulating and observing and this thing is used to represent something greater, hopefully a more general concept. That’s known as a “model.” Continue reading

Undergraduate Biology Should Teach More Evolution

I have been researching the literature in science education, specifically neuroscience, genetics, and microbiology, and I’m surprised to find that not much import is given to the theory of evolution (or natural selection). Given that “Nothing in biology makes sense except in the light of evolution” (a 1973 essay), I really expected to find a unit on evolution or at least this theme within the curricula of these disciplines.


Kerchner, Hardwick, and Thornton surveyed faculty of undergraduate neuroscience programs to determine which “Core Competencies” were most important for undergraduate neuroscience majors (for the record, when I was an undergrad, very few colleges offered this field of study as a major, it was regarded to be a specialty reserved for graduate study — for example, you could major in biology, molecular genetics, biochemistry,  evolution-ecology-organismal biology, and microbiology, but not neuroscience at Ohio State).  The three most important core competencies for a neuroscience program:  1. Ability to engage in critical & integrative thinking, 2. Basic neuroscience knowledge, and 3. Scientific Inquiry / Research Skills (in that order). Interestingly, quantitative ability was ranked the least essential by the greatest proportion of faculty.

Continue reading